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Figure 1. DiffusionSfM. Top: Given a set of multi-view images as input (left), DiffusionSfM parametrizes scene geometry and cameras
(right) as pixel-wise ray origins and endpoints in a global frame and learns a denoising diffusion model to infer these from multi-view
input. In contrast to current structure from motion pipelines, which often adopt a two-stage approach of pairwise reasoning followed by
global optimization, our method unifies both stages into a single end-to-end multi-view reasoning step. Bottom: Sample results for the
inferred scene geometry and cameras given multi-view input. On the challenging real-world CO3D dataset, we find that DiffusionSfM
yields higher-fidelity geometry and cameras compared to prior classical and learning-based methods.

Abstract

Current Structure-from-Motion (SfM) methods often adopt
a two-stage pipeline involving learned or geometric pair-
wise reasoning followed by a global optimization. We in-
stead propose a data-driven multi-view reasoning approach
that directly infers cameras and 3D geometry from multi-
view images. Our proposed framework, DiffusionSfM,
parametrizes scene geometry and cameras as pixel-wise
ray origins and endpoints in a global frame, and learns
a transformer-based denoising diffusion model to predict
these from multi-view input. We develop mechanisms to
overcome practical challenges in training diffusion models
with missing data and unbounded scene coordinates, and
demonstrate that DiffusionSfM allows accurate prediction
of 3D and cameras. We empirically validate our approach
on challenging real world data and find that DiffusionSfM
improves over prior classical and learning-based methods,

while also naturally modeling uncertainty and allowing ex-
ternal guidance to be incorporated in inference.

1. Introduction

The task of recovering structure (geometry) and motion
(cameras) from multi-view images has long been a focus of
the computer vision community, with typical pipelines [21]
performing pairwise correspondence estimation followed
by global optimization. While classical methods relied on
hand-designed features, matching, and optimization, there
has been a recent shift towards incorporating learning-based
alternatives [3, 4, 12, 20]. More recently, the widely-
influential DUSt3R [30] advocates for predicting pairwise
3D pointmaps (instead of only correspondences), demon-
strating that this can yield accurate dense geometry and
cameras. In order to reconstruct more than 2 views,
DUSt3R (and its variants) still require a global optimiza-



tion reminiscent of classic bundle adjustment. While these
methods, both classical and learning-based, have led to
impressive improvements in SfM, the overall approach is
largely unchanged – learned or geometric pairwise reason-
ing followed by global optimization. In this work, we seek
to develop an alternative approach that directly predicts both
structure and motion, while unifying pairwise reasoning and
global optimization for data-driven multi-view reasoning.

We are of course not the first to attempt to find unified al-
ternatives to the two-stage SfM pipeline. In the sparse-view
setting where conventional correspondence-based methods
struggle, several works employ multi-view architectures to
jointly reason across input views. SparsePose [22], Rel-
Pose++ [10], and PoseDiffusion [28] all leverage multi-
view transformers to estimate camera poses for input im-
ages, albeit using differing mechanisms such as regression,
energy-based modeling, and denoising diffusion. More re-
cently, RayDiffusion [32] argues for a local raymap param-
eterization of cameras instead of a global extrinsic matrix,
and show that existing patch-based transformer architec-
tures can be easily adapted for this task, yielding signifi-
cantly more accurate pose predictions. Importantly, such
methods predict only camera motion and fail to predict
scene structure.

In this work, we present DiffusionSfM, an end-to-end
multi-view model that directly infers cameras and dense 3D
geometry from multiple input images. Instead of inferring
rays per pixel (as in RayDiffusion [32]) or 3D points per
pixel (as in DUSt3R [30]), DiffusionSfM effectively com-
bines both to predicts ray origins and endpoints per pixel,
directly reporting both scene geometry (endpoints) and gen-
eralized cameras (rays). These can readily be converted
back to traditional cameras [32]. Compared to RayDiffu-
sion, our model directly predicts structure as well as mo-
tion. Compared to DUSt3R, our model directly predicts
motion as well as structure, but even more importantly does
so for N views, eliminating the need for memory-intensive
global alignment. To model uncertainty, we train a denois-
ing diffusion model but find two key challenges need to be
addressed. First, diffusion models require (noisy) ground-
truth as input for training but existing real datasets do not
have known endpoints for all pixels due to missing depth in
multi-view stereo. Second, the 3D coordinates of endpoints
can be potentially unbounded, whereas diffusion models re-
quire normalized data. We develop mechanisms to over-
come these challenges, leveraging additional “mask condi-
tioning” as input to inform the model of missing input data,
and parameterizing 3D points in projective space instead of
Euclidean space. We find that these allow us to learn accu-
rate predictions for structure and motion.

We train and evaluate our system on the CO3D
dataset [18] and find that DiffusionSfM yields more accu-
rate geometry and cameras compared to prior works trained

on similar data (see Fig. 1 for sample predictions). We also
show that the probabilistic nature of our system allows re-
covering uncertainty, and the iterative inference allows eas-
ily incorporating external guidance without any fine-tuning,
e.g. off-the-shelf monocular depth prediction to boost the
accuracy of the recovered geometry. In summary, we show
that DiffusionSfM can serve as a unified multi-view reason-
ing model for 3D geometry and cameras.

2. Related Work

Structure from Motion. Structure-from-Motion (SfM)
systems [21] aim to simultaneously recover geometry
and cameras given a set of input images. The typical
SfM pipeline extracts pixel correspondences from keypoint
matching [1, 14], then performs global bundle adjustment
(BA) to optimize sparse 3D points and camera parameters
by minimizing reprojection errors. Recently, SfM pipelines
have been substantially enhanced by replacing classical
subcomponents with learning-based methods, such as neu-
ral feature descriptors [4, 6], image matching [13, 20, 26],
and bundle adjustment [11, 27].

More recently, an emerging body of research aims to
unify the various SfM subcomponents into an end-to-end
neural framework. Notably, ACEZero [2] fits a single neu-
ral network to input images and learns pixel-aligned 3D co-
ordinates in a self-supervised manner, while FlowMap [23]
predicts per-frame cameras and depth maps while using
off-the-shelf optical flow as a supervision signal. Though
ACEZero and FlowMap are promising attempts to revo-
lutionize SfM pipelines, they both register images incre-
mentally and may suffer under large viewpoint changes.
DUSt3R [30] directly regresses 3D pointmaps from image
pairs and shows strong generalization ability [9, 18]. On top
of DUSt3R, MASt3R [8] adds a feature head to DUSt3R,
offering pixel-matching capabilities. MASt3R-SfM [5] is a
more scalable SfM pipeline based on MASt3R. While these
approaches [5, 8, 30] show impressive performance and ro-
bustness under sparse views, they are essentially pair-based,
requiring sophisticated global alignment procedures to form
a consistent estimate for more than two views.

Pose estimation with global reasoning. For the task
of sparse-view pose estimation, learning-based methods
equipped with global reasoning show favorable robustness
where traditional SfM methods [21, 24] fail. This line of
research includes energy-based [10, 31], regression-based
[22], and diffusion-based pose estimators [28, 32]. Among
them, diffusion-based methods show a better ability to han-
dle uncertainty. Closest to our work, RayDiffusion [32]
leverages a denoising diffusion model [7, 16] with a patch-
aligned ray representation to predict generic cameras. Our
method goes further and pursues a generic representation
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Figure 2. Method. Given sparse multi-view images as input, DiffusionSfM predicts pixel-wise ray origins and endpoints for each input
image in a global frame (Sec. 3.1), via a denoising diffusion process. For each image, we compute off-the-shelf patch-wise image
embeddings using DINOv2 [15]. We use a single downsampling convolutional layer to embed noisy ray origins and endpoints into noisy
ray latents, while matching the spatial footprint of the image embeddings. We implement a diffusion transformer architecture that predicts
clean ray origin and endpoint latents from noisy samples. A convolutional DPT head outputs full-resolution denoised ray origins and
endpoints. The ray endpoints can be directly visualized in 3D, or further post-processed to recover camera extrinsics, camera intrinsics,
and multi-view consistent depth maps. At inference, the depth mask is set to all ones so that the diffusion model predicts origins and
endpoints for all pixels.

for both cameras and geometry, in the form of as ray ori-
gins and endpoints for each pixel. In addition to resulting in
a richer output, this joint geometry and pose prediction also
yields improvements for pose estimation.

3. Method
Given a set of sparse (i.e. 2-8) input images, DiffusionSfM
predicts the geometry and cameras of a 3D scene in a global
coordinate frame. In Sec. 3.1, we propose to represent 3D
scenes as dense pixel-aligned ray origins and endpoints. To
predict such scene representations from sparse input images
while modeling uncertainty, Sec. 3.2 proposes a denoising
diffusion architecture for dense ray origin and endpoint pre-
diction. We then discuss some key practical challenges in
training such a model in Sec. 3.3 and then discuss how such
a diffusion model can also incorporate additional external
cues for inference in Sec. 3.4.

3.1. 3D Scenes as Ray Origins and Endpoints
Given an input image x with depth map D, camera intrin-
sics K ∈ R3×3, and world-to-camera extrinsics P ∈ R4×4

(equivalently, rotation R ∈ SO(3) and translation T ∈
R3), each 2D image pixel pi = [ui, vi] corresponds to a
ray that travels from the camera center c through the pixel’s
projected position on the image plane, terminating at the
object’s surface as specified by the depth map D. The end-
point of the ray associated with image pixel pi is given by:

ei = P−1h
(
Di ·K−1[ui, vi, 1]

T
)

(1)

where h maps the 3D point into homogeneous coordinates.
The shared ray origin oi is equivalent to the camera center
c, and can be computed as:

oi = c = h
(
−R−1T

)
(2)

In summary, we associate each image pixel with a ray ori-
gin and endpoint si = ⟨oi, ei⟩ in world coordinates, de-
scribing the location of the observing camera and the ob-
served 3D point on the object surface. Given a bundle of
ray origins and endpoints, we can extract the corresponding
camera pose and depth maps: the supplemental includes the
conversion details.

Learning Over-Parameterized Representations. While
representing scenes as ray origins and endpoints appears re-
dundant, it facilitates leveraging the distributed deep fea-
tures learned by state-of-the-art vision backbones [32], such
as DINOv2 [15], which encode image information in a
patch-wise manner. It is worth mentioning that although
the ray origins {oi} should ideally be identical for all pixels
i, we predict ray origins densely alongside ray endpoints
{ei}. This approach encourages the predicted ray origins
to be close to each other within the same image, serving as
regularization during model training.

3.2. DiffusionSfM
We propose a denoising Diffusion Transformer (DiT) ar-
chitecture [16] that predicts ray origins and endpoints (Sec.
3.1) via a denoising diffusion process. An overview of Dif-
fusionSfM is given in Fig. 2.

Diffusion Framework. Given a set of N input images
{x(i)}Ni=1, with corresponding pixel-aligned ray origins and
endpoints S = {s(i)}Ni=1, we apply a forward diffusion pro-
cess [7, 25] that adds time-dependent Gaussian noise to the
origin and endpoint pointmaps. Let St denote the set of
time-dependent noisy origins and pointmaps, where S0 is
the clean sample and ST is the noisy sample at the largest
diffusion timestep T (approximating Gaussian noise). The
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Figure 3. Qualitative Comparison on Camera Pose Accuracy and Predicted Geometry. For each method, we plot the ground-truth
cameras in black and the predicted cameras in other colors. DiffusionSfM yields more accurate camera poses than prior art, and produces
point clouds that more closely match the ground-truth point clouds on the left. Compared to DUSt3R, which sometimes fails to register
images in a consistent manner, DiffusionSfM consistently yields a coherent global prediction.

forward diffusion process is defined by:

St =
√
ᾱt S0 +

√
1− ᾱt ϵ (3)

where t ∼ Uniform(0, T ], ϵ ∼ N (0, I), and ᾱt follows
a pre-defined noise schedule that controls the strength of



added noise at each timestep. To perform the reverse dif-
fusion process, which progressively reconstructs the clean
sample given noisy observations, we train a diffusion model
fθ that takes the set St as input and optionally incorporates
additional conditioning information C. The model is trained
using the following loss function:

LDiffusion = Et,S0,ϵ∥S0 − fθ(St, t, C)∥2 (4)

Architecture. We implement fθ using a DiT [16] ar-
chitecture conditioned on deep image features C ∈
RN×h×w×c1 from DINOv2 [15], where h and w are the
patch resolution and c1 is the embedding dimension. To
align pixels to the spatial information learned by DINOv2,
we apply a convolutional layer with kernel size and stride
equal to ViT patch size: this spatially downsamples the
noisy origins and endpoints S to match the DINOv2 fea-
tures while increasing their feature dimension:

F = Conv(St) ∈ RN×h×w×c2 (5)

The combined DiT input is constructed by concatenating
these two feature sets along the channel dimension: F ⊕ C.

While the DiT operates on low-resolution features, our
objective is to produce pixel-aligned dense ray origins and
endpoints. To achieve this, we employ a DPT (Dense Pre-
diction Transformer) [17] decoder, which takes intermedi-
ate feature maps from both DINOv2 and DiT as inputs. The
DPT decoder progressively increases the feature resolution
through several convolutional layers. The final ray origins
and endpoints are decoded from the DPT output using a
single linear layer. During inference, we apply the trained
model in the reverse diffusion process to iteratively denoise
a randomly initialized Gaussian sample.

3.3. Practical Training Considerations
Homogeneous Coordinates for Unbounded Geometry.
Real-world scenes tend to exhibit large variations in scale.
However, neural networks tend to train most effectively
when working with bounded inputs and outputs (e.g. be-
tween -1 and 1). To stabilize training across the large scale
variations present in 3D scene datasets, we propose to repre-
sent ray origins and endpoints in homogeneous coordinates.

Specifically, given any 3D point, we first apply a homo-
geneous transform from R3 → P3:

(x, y, z) → 1

w
(x, y, z, 1) (6)

where w is an arbitrary scale factor. To encourage bounded
coordinates in practice, we choose w such that the homoge-
neous coordinate is unit-norm:

w :=
√

x2 + y2 + z2 + 1 (7)

Unit normalization allows homogeneous coordinates to
serve as a bounded representation for unbounded scene ge-
ometry. For example, (x, y, z, 0) is a point at infinity in the
direction of (x, y, z). In the supplemental material, we ana-
lyze the impact of homogeneous representations on training
stability.

Training with Incomplete Ground Truth. A significant
challenge in diffusion training is that ground truth depth val-
ues from real-world datasets often contain invalid or miss-
ing data. It is highly undesirable for missing ray endpoints
derived from incomplete data to be interpreted as part of
the target distribution. Unlike regression models which
can simply mask the loss at invalid pixels, diffusion mod-
els gradually map entire images from the noise distribu-
tion to the target distribution and thus require dense super-
vision. Many real-world datasets such as CO3D [18] and
MegaDepth [9] only provide sparse SfM [21] point clouds,
resulting in incomplete depth information.

To mitigate this issue, we further apply depth masks
M ∈ RN×H×W to the DiT inputs, where zero values indi-
cate pixels with invalid depth. During training, we multiply
DiT inputs with depth masks element-wise, then concate-
nate along the channel dimension: S ′

t = (M · St) ⊕ M.
Then, we only compute the diffusion loss in Eq. 4 only over
unmasked pixels. By implementing these strategies, we en-
courage the model to focus on regions with valid ground
truth values during training. During inference, however, we
would like the diffusion process to estimate endpoints at all
pixels, so we always use depth masks with values set to one.

Sparse-to-Dense Training. In practice, we find that train-
ing the entire model from scratch leads to slow convergence
and suboptimal performance. To address this, we propose a
sparse-to-dense training approach. First, we train a sparse
version of the model, where the DPT decoder is removed,
and the output ray origins and endpoints have the same spa-
tial resolution as the DINOv2 features. Unlike Eq.5, no spa-
tial downsampling is required, so this sparse model uses a
single linear layer to embed the noisy ray origins and end-
points. Once the sparse model is trained, we initialize the
dense model DiT with the learned weights from the sparse
model. This two-stage approach significantly improves per-
formance: see supplementary for comparisons.

3.4. Guidance for Diffusion Inference
One benefit of a diffusion formulation is that the itera-
tive denoising process allows us to guide intermediate sam-
ple predictions towards external signals, refining the pre-
dictions to be more precise while maintaining multi-view
consistency. After each step of diffusion, we push the
depth values of predicted clean ray endpoints {ei}Ni=1 to-
wards depths derived from unprojecting off-the-shelf esti-



mates from monocular depth networks. Let {d̂i} be the
depth of each predicted ray endpoint after projecting into
the estimated camera frame, and let {dMoGe

i } be the output
of MoGe [29] after 1D optimal alignment to match the scale
of {d̂i}. We calculate the updated ray endpoints after guid-
ance as:

d̂′
i = (1− λ)d̂i + λdMoGe

i (8)

where λ = 0.2. We show in Tab. 4 that diffusion guidance
helps improve pose and geometry accuracy.

4. Experiments
4.1. Experimental Setup
Dataset. We train and evaluate our model on the CO3D
[18] dataset, featuring turntable video sequences of object
categories. Following prior work [10, 32], we train our
model on 41 object categories and hold out 10 unseen cate-
gories to evaluate generalization.

Baselines and Metrics. To evaluate camera pose accu-
racy in the sparse-view setup, we compare with Ray Dif-
fusion [32] and DUSt3R [30], along with previous methods
[10, 19, 28]. It is important to note that DUSt3R is trained
on a blend of eight datasets, including samples from all
CO3D categories, whereas our model is exclusively trained
on a subset of CO3D. To ensure a fair comparison, we
re-train DUSt3R on the 41-10 split of CO3D, using the
authors’ official implementation and hyperparameters (re-
ferred to as DUSt3R-CO3D). The model trained on all eight
datasets is referred to as DUSt3R-all. To evaluate cam-
era predictions, we follow prior work [32] and convert pre-
dicted rays back to traditional extrinsic matrices and report
two pose accuracy metrics: (1) Camera Rotation Accuracy
which compares the predicted relative camera rotation be-
tween images against ground truth and (2) Camera Center
Accuracy which compares predicted camera centers to the
ground truth after a similarity alignment. To evaluate the
estimated geometry (i.e. ray endpoints), we report Chamfer
Distance (CD) and compare our method with both versions
of DUSt3R. We use 2-8 images as input across evaluations.

4.2. Evaluation on CO3D
Camera Pose Accuracy. We present the quantitative re-
sults in Tab. 1. Across both seen and unseen categories,
DiffusionSfM achieves comparable camera rotation accu-
racy to DUSt3R-all despite using less training data, and
outperforms baselines trained on CO3D such as DUSt3R-
CO3D and Ray Diffusion. Notably, our method demon-
strates strong generalization, achieving significant improve-
ments over CO3D-trained baselines on unseen categories.
For camera center accuracy, our approach consistently sur-
passes other methods, including DUSt3R-all. Additionally,
the qualitative results in Fig. 3 illustrate that DiffusionSfM

produces robust predictions under partial observations (e.g.
the car example) and for symmetric structures (e.g. the ap-
ple and vase examples), where DUSt3R often produces
inaccurate results. We attribute this improvement to our
model’s probabilistic modeling capability derived from dif-
fusion, as well as its multi-view reasoning abilities, which
together effectively handle these challenging scenarios.

Predicted Geometry. To evaluate predicted geometry, we
compute Chamfer Distance (CD) and show comparisons
against baselines in Tab. 2. We compute CD in two setups
(with and without foreground object mask), and find that
our method performs best without foreground masking. In
this setup, the predicted ray endpoints corresponding to the
background image pixels tend to have larger scale variations
than foreground ones, and therefore dominate CD. This re-
sult indicates that our model provides more accurate pre-
dictions for complex image backgrounds. In terms of CD
with masking, DUSt3R-all achieves the best result, while
our approach outperforms DUSt3R-CO3D. See Fig. 3 for
visualization.

Inference Speed. Though our method requires iterative
diffusion denoising at inference, we can speed this up by
performing early stopping. Specifically, we can treat the
x0-prediction from early timesteps as our output instead of
iterating over all denoising timesteps. Consistent with ob-
servations by Zhang et al. [32], this in fact yields more ac-
curate predictions than the final-step diffusion outputs. As a
result we only require 10 denoising diffusion timesteps for
inference, taking 1.91 seconds on a single A5000 GPU with
8 input images. In contrast, DUSt3R takes 8.73 seconds to
run the complete pairwise inference and global alignment
procedure. We provide additional analysis in the supple-
mentary material.

4.3. Ablation Study
Homogeneous Coordinates. The homogeneous repre-
sentation for ray origins and endpoints is critical for stable
model training. Specifically, we experiment with replacing
the proposed homogeneous representation with origins and
endpoints in R3. We include more details regarding this ex-
periment in the supplementary material.

Depth Mask Conditioning. To assess the effectiveness of
the proposed depth mask conditioning, we train a baseline
model without depth mask conditioning. For missing values
in the ground truth depth maps, we apply nearest-neighbor
interpolation to fill in invalid pixels. This experiment is
performed on an early checkpoint of our model for effi-
cient training evaluation, with results presented in Tab. 3.
The findings indicate that omitting depth mask condition-
ing significantly degrades both camera pose accuracy and



Rotation Accuracy (↑, @ 15◦) Center Accuracy (↑, @ 0.1)
# of Images 2 3 4 5 6 7 8 2 3 4 5 6 7 8
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s COLMAP [19] 30.7 28.4 26.5 26.8 27.0 28.1 30.6 100 34.5 23.8 18.9 15.6 14.5 15.0

PoseDiffusion [28] 75.7 76.4 76.8 77.4 78.0 78.7 78.8 100 77.5 69.7 65.9 63.7 62.8 61.9
RelPose++ [10] 81.8 82.8 84.1 84.7 84.9 85.3 85.5 100 85.0 78.0 74.2 71.9 70.3 68.8
Ray Diffusion [32] 91.8 92.4 92.6 92.9 93.1 93.3 93.3 100 94.2 90.5 87.8 86.2 85.0 84.1
DUSt3R-CO3D [30] 86.7 87.9 88.0 88.2 88.6 88.8 88.9 100 92.0 86.8 83.8 82.0 81.1 80.4
DUSt3R-all [30] 91.7 92.7 93.3 93.6 93.8 94.0 94.3 100 93.0 85.7 81.9 79.6 77.8 76.8
DiffusionSfM (Ours) 92.4 93.0 93.3 93.5 93.6 93.8 93.8 100 95.2 92.1 90.5 89.2 88.7 87.8
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s COLMAP [19] 34.5 31.8 31.0 31.7 32.7 35.0 38.5 100 36.0 25.5 20.0 17.9 17.6 19.1

PoseDiffusion [28] 63.2 64.2 64.2 65.7 66.2 67.0 67.7 100 63.6 50.5 45.7 43.0 41.2 39.9
RelPose++ [10] 69.8 71.1 71.9 72.8 73.8 74.4 74.9 100 70.6 58.8 53.4 50.4 47.8 46.6
Ray Diffusion [32] 83.5 85.6 86.3 86.9 87.2 87.5 88.1 100 87.7 81.1 77.0 74.1 72.4 71.4
DUSt3R-CO3D [30] 79.8 81.5 82.6 82.7 83.0 83.3 83.7 100 83.6 77.2 71.8 70.0 68.1 67.0
DUSt3R-all [30] 90.8 92.6 93.6 93.6 93.8 93.6 93.4 100 87.9 79.8 74.3 71.7 69.4 67.8
DiffusionSfM (Ours) 90.1 91.0 91.8 92.6 92.9 93.0 93.1 100 90.9 85.7 83.7 82.4 80.9 80.7

Table 1. Camera Rotation and Center Accuracy on CO3D. On the left, we report the proportion of relative camera rotations within 15◦

of the ground truth. On the right, we report the proportion of camera centers within 10% of the scene scale. To align the predicted camera
centers to ground-truth, we apply an optimal similarity transform (s, R, t), hence the alignment is perfect at N = 2 but worsens with more
images. DiffusionSfM outperforms all other methods for camera center accuracy, and outperforms all methods trained on equivalent data
for rotation accuracy.

# of Images 2 3 4 5 6 7 8

DUSt3R* [30] 0.036 0.037 0.040 0.040 0.037 0.036 0.039
DUSt3R [30] 0.021 0.023 0.024 0.024 0.025 0.025 0.023
DiffusionSfM 0.020 0.022 0.024 0.023 0.022 0.023 0.023

DUSt3R* [30] 0.038 0.036 0.036 0.036 0.034 0.033 0.034
DUSt3R [30] 0.023 0.022 0.019 0.020 0.019 0.020 0.020
DiffusionSfM 0.031 0.027 0.026 0.026 0.026 0.025 0.026

Table 2. Chamfer Distance (↓) on CO3D Unseen Categories.
Top: CD on all scene points. Bottom: CD on foreground points
only. DUSt3R* is trained on only CO3D, while DUSt3R-all is
trained on multiple datasets. DiffusionSfM outperforms all other
methods on full scene geometry, and outperforms both DUSt3R-
CO3D on foreground geometry.

predicted geometry. While interpolation can be effective
for filling missing depth within object regions, it can in-
troduce substantial noise in the background (e.g. the sky).
Such noise adversely impacts diffusion model training, as
the entire input ray origin and endpoint map are used.

4.4. Leveraging Diffusion Denoising Process
Diffusion Guidance. The iterative denoising process en-
ables using external signals to make better predictions for
each timestep, bringing a more precise final prediction.
Here, we leverage the monocular depth estimates from
MoGe [29] in two ways: (1) Linear interpolation guidance
and (2) Direct replacement (Tab. 4). The results show that
monocular depth guidance helps improve the predicted ge-
ometry while direct replacement degrades the predicted ge-

# of Images 2 3 4 5 6 7 8

w/o Mask 82.4 84.1 84.7 85.6 85.7 86.0 85.9
DiffusionSfM 87.1 89.0 90.1 90.7 90.9 90.9 91.2

w/o Mask 100.0 89.0 82.2 78.9 76.5 74.3 72.9
DiffusionSfM 100.0 89.7 84.6 82.0 79.9 78.8 78.1

w/o Mask 0.029 0.029 0.031 0.030 0.030 0.030 0.029
DiffusionSfM 0.024 0.028 0.029 0.027 0.028 0.026 0.027

Table 3. Ablation Study on Depth Mask Conditioning. Top:
Camera rotation accuracy (↑). Middle: Camera center accuracy
(↑). Bottom: Chamfer distance (↓). Experiments are conducted
on unseen categories from CO3D, using an early model check-
point for training efficiency. Adding mask conditioning to indicate
missing data during training significantly improves camera accu-
racy and geometry quality.

ometry as the MoGe estimates for each input view may not
be multi-view consistent.

Multi-modality from Multiple Diffusion Sampling. One
benefit of using diffusion models is that we can produce
diverse samples given challenging input images. For ex-
ample, in Fig. 4, the vase has symmetrical patterns, and we
show two different predicted endpoints from DiffusionSfM:
both samples explain the flowers in the images in differ-
ent ways. Compared to regression models e.g. DUSt3R [6],
DiffusionSfM excels at handling uncertainty. To visualize
the uncertainty of our model, we can generate uncertainty
maps for DiffusionSfM by running multiple inferences and
then taking the variances of the predictions and setting a



# of Images 2 3 4 5 6 7 8

DiffusionSfM 0.024 0.029 0.036 0.028 0.031 0.026 0.027
w/ Guidance 0.020 0.026 0.031 0.029 0.027 0.026 0.027
w/ Replacing 0.037 0.046 0.061 0.057 0.052 0.046 0.046

Table 4. Effect of Monocular Depth Diffusion Guidance on
Predicted Geometry. We conduct experiments on (a smaller sub-
set of instances from) unseen categories from CO3D and report
chamfer distance (↓) to assess the quality of recovered geome-
try. Adding diffusion guidance improves the quality of predicted
geometry in most cases. In contrast, naively replacing the dif-
fusion ray endpoints with unprojected monocular depth results in
substantially worse performance, highlighting the benefit of multi-
view reasoning for geometry inference.

Origin & Endpoint Diffusion Timesteps

Input Images 3D Point Clouds & Recovered Cameras

Sample 1Input

Sample 2

Origin & Endpoint Diffusion Timesteps

Input Images 3D Point Clouds & Recovered Cameras

Sample 1Input Sample 2Sample 2

Figure 4. Multi-modality of DiffusionSfM. We show two distinct
samples from DiffusionSfM, starting from the same input images
but different random noise. Sample 1 explains the input images
by putting all flowers on the left side, while Sample 2 places one
flower on each side. DiffusionSfM is able to predict multi-modal
geometry distributions when the scene layout may be ambiguous
in the input images.

Figure 5. Uncertainty Maps from Multiple DiffusionSfM Sam-
ples. We can generate uncertainty maps for DiffusionSfM by run-
ning multiple inferences and then computing the variances of the
predicted origins and endpoints. We find that the model is typically
uncertain around depth boundaries and regions with low texture.

threshold (see Fig. 5).

5. Discussion
We present DiffusionSfM and demonstrate that it recovers
accurate predictions of both cameras and geometry from
multi-view input. Although our results are promising, sev-
eral challenges and open questions remain. In particular,
current pointmap prediction models such as DUSt3R are
trained at large scale across multiple datasets. It would be
interesting to similarly scale our training, with some careful
consideration on how to sample sets of overlapping views
as opposed to just pairs. Moreover, the compute require-
ment in multi-view transformers scales quadratically with
the number of input images: one would require masked at-
tention to deploy systems like ours for a large set of input
images. Despite these challenges, we believe that our work
highlights the potential of a unified approach for multi-view
geometry tasks. We envision that our approach can be built
upon to train a common system across related geometric
tasks, such as SfM (input images with unknown origins
and endpoints), registration (some images have known ori-
gins and endpoints whereas others don’t), mapping (known
rays but unknown endpoints), and view synthesis (unknown
pixel values for known rays).
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allari, Áron Monszpart, Daniyar Turmukhambetov, and Vic-
tor Adrian Prisacariu. Scene coordinate reconstruction: Pos-
ing of image collections via incremental learning of a relo-
calizer. In ECCV, 2024. 2

[3] Ruojin Cai, Joseph Tung, Qianqian Wang, Hadar Averbuch-
Elor, Bharath Hariharan, and Noah Snavely. Doppelgangers:
Learning to disambiguate images of similar structures. In
ICCV, 2023. 1

[4] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPR, 2018. 1, 2

[5] Bardienus Duisterhof, Lojze Zust, Philippe Weinzaepfel,
Vincent Leroy, Yohann Cabon, and Jerome Revaud. Mast3r-
sfm: a fully-integrated solution for unconstrained structure-
from-motion, 2024. arXiv preprint arXiv:2409.19152. 2

[6] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
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DiffusionSfM: Predicting Structure and Motion
via Ray Origin and Endpoint Diffusion

Supplementary Material

Overview

The supplementary material includes sections as follows:
• Section A: Additional analysis on integrating Ray Diffu-

sion [32] camera poses with MoGe [29] monocular depth
estimates.

• Section B: More qualitative comparisons of predicted ge-
ometry and camera poses against baseline methods.

• Section C: Visualizations illustrating the effect of mono-
depth diffusion guidance.

• Section D: Details and evaluation of the sparse-to-dense
training strategy employed in DiffusionSfM.

• Section E: Inference details.
• Section F: More analysis of the homogeneous representa-

tion.
• Section G: Converting predicted ray origins and end-

points into camera poses.

A. Additional Analysis: Ray Diffusion + MoGe

We analyze whether the combination of an off-the-shelf
sparse-view pose estimation method and a monocular depth
estimation model is sufficient to infer the 3D geometry of
scenes from multiple images. Here, we conduct an addi-
tional experiment that combines the state-of-the-art pose
estimation method Ray Diffusion [32] with the monocular
depth model MoGe [29].
Specifically, we adopt the predicted camera poses (intrinsics
and extrinsics) predicted by Ray Diffusion and unproject
image pixels using the mono-depth estimates from MoGe
for each input image, essentially inferring the scene struc-
ture from multiple images. To minimize the scale differ-
ence for the predicted camera poses and depth to form a
single consistent output, we follow these procedures: (1)
We match the MoGe depth with the ground truth depth us-
ing a 1D optimal alignment (thus giving this baseline some
privileged information). (2) We align the predicted camera
centers from Ray Diffusion with ground truth cameras us-
ing an optimal similarity transform. (3) Finally, we unpro-
ject image pixels using the updated camera parameters and
the aligned depth. We compare the predicted geometry of
this approach with our method and DUSt3R [30] in Tab. 5.
The results show that a naive combination of Ray Diffusion
and MoGe yields poor Chamfer Distance, even though Ray
Diffusion estimates relatively accurate focal length. This is
because the MoGe depth estimates for different input views
are inconsistent with each other. Therefore, to predict con-
sistent 3D geometry from multiple images, the model must

learn to reason over the entire set of views, rather than re-
lying on mono-depth predictions from individual images.
We also include visualizations of the predicted geometry for
this approach in Fig. 6, where duplicated structures are ob-
served due to significant pose errors or minor misalignment
between views.

B. More Qualitative Comparisons

We include more qualitative comparisons with baselines on
the predicted geometry (in Fig. 6) and camera poses (in
Fig. 7).
Discussions. We show that DiffusionSfM can handle chal-
lenging input images where objects present highly symmet-
ric patterns (e.g. the tennis ball example in Fig. 6 and the
donut example in Fig. 7), while Ray Diffusion [32] and
DUSt3R [30] fail to predict correct camera poses. Com-
pared to Ray Diffusion, our approach leverages the predic-
tion of dense scene geometry (i.e. pixel-aligned ray origins
and endpoints) rather than relying on patch-wise “distance-
agnostic rays.” When compared to DUSt3R, despite being
trained exclusively on CO3D [18], our model benefits from
attending to all input images simultaneously and utilizing
a diffusion framework to effectively manage the high un-
certainties inherent to this task (see also Fig. 3 for exam-
ples where DUSt3R gives degraded results). Additionally,
we observe that DUSt3R often predicts precise camera rota-
tions but struggles with camera centers in many cases (e.g.
the keyboard and backpack examples in Fig. 6). This obser-
vation aligns with our quantitative results for camera center
evaluation, presented in Tab. 1.

C. Mono-Depth Diffusion Guidance Visualiza-
tion

In Fig. 8, we visualize the impact of mono-depth diffu-
sion guidance (Sec. 3.4). By utilizing the relatively pre-
cise and sharp monocular depth estimates from MoGe [29],
we effectively reduce floaters along object boundaries and
enhance the predicted geometry (see Tab. 4 for numeri-
cal results). Additionally, we compare mono-depth diffu-
sion guidance with direct depth replacement in Fig. 9. Al-
though replacing the predicted depth from DiffusionSfM
with MoGe estimates produces cleaner geometry, it com-
promises multi-view consistency. For instance, this ap-
proach may result in artifacts such as multiple ground
planes instead of maintaining a single consistent surface.
To clarify, while diffusion guidance improves our method,



RD + MoGeDiffusionSfM DUSt3R-allInput Images / 
GT Point Clouds

Figure 6. More Qualitative Comparisons on Predicted Geometry and Camera Poses. DiffusionSfM shows superior capabilities in
handling challenging samples, e.g. the skateboard and tennis ball. Additionally, while we observe that DUSt3R-all can predict highly
precise camera rotations, it often struggles with camera centers (see the keyboard and backpack examples).

we consistently use the raw output from DiffusionSfM for
comparisons with other baselines and in our ablation stud-

ies.



Ray DiffusionDiffusionSfM DUSt3R-allInput Images

Figure 7. More Qualitative Comparisons on Predicted Camera Poses.

D. Sparse-to-Dense Training Details and Eval-
uation

As outlined in Sec. 3.3, we follow a sparse-to-dense strat-
egy to train our model as we find that training the high-
resolution model (i.e. dense model) from scratch yields sub-

optimal performance. We visualize the output of the sparse
model and dense model in Fig. 10. In the following, we
introduce the details and resources to train DiffusionSfM.
Details. Our model leverages DINOv2-ViTs14 [15] as the
feature backbone and takes 224×224 images as input. This
results in 16 × 16 image patches, each with patch size 14.



Raw OutputInput Images w/ Depth Guidance

Figure 8. Visualizations of the Effect of Mono-Depth Diffusion Guidance. We utilize mono-depth estimates from MoGe [29] to guide
the x0-prediction from our model towards more accurate, clean estimates. This guidance enhances the quality of the predicted geometry
while preserving multi-view consistency.

Raw OutputInput Images w/ Depth Guidance w/ Depth Replacement

Viewpoint 1

Viewpoint 2

Figure 9. Qualitative Comparison between Depth Diffusion Guidance and Direct Depth Replacement. Replacing the predicted depth
with MoGe estimates yields the cleanest results. However, this approach disrupts the multi-view consistency learned by DiffusionSfM,
leading to artifacts such as the presence of multiple ground planes.

We first train a sparse model that outputs patch-wise (i.e.
16 × 16) ray origins and endpoints. Since the spatial reso-
lution of the ground truth ray origins and endpoints for the
sparse model aligns with the DINOv2 feature map, we use
a single linear layer to embed the noisy ray origins and end-
points (without spatial downsampling), rather than a convo-
lutional layer as shown in Eq. 5. We also remove the DPT

[17] decoder in our sparse model. Subsequently, we ini-
tialize our dense model from the pre-trained sparse model
to predict dense (i.e. 256× 256) ray origins and endpoints.
We copy-paste the DiT [16] weights from the sparse model.
Whereas for the convolutional layer used to embed ray ori-
gins and endpoints, we duplicate the linear-layer weights by
16× 16 (as the patch size of the conv-layer is 16) and then



# of Images 2 3 4 5 6 7 8

C
D

RD+MoGe [29, 32] 0.059 0.064 0.071 0.062 0.063 0.061 0.061
DUSt3R-CO3D [30] 0.036 0.037 0.040 0.040 0.037 0.036 0.039
DUSt3R-all [30] 0.021 0.023 0.024 0.024 0.025 0.025 0.023
DiffusionSfM 0.020 0.022 0.024 0.023 0.022 0.023 0.023

C
D

w
/M

as
k RD+MoGe [29, 32] 0.071 0.075 0.068 0.067 0.066 0.064 0.064

DUSt3R-CO3D [30] 0.038 0.036 0.036 0.036 0.034 0.033 0.034
DUSt3R-all [30] 0.023 0.022 0.019 0.020 0.019 0.020 0.020
DiffusionSfM 0.031 0.027 0.026 0.026 0.026 0.025 0.026

Fo
ca

lL
en

gt
h Ray Diffusion [32] 0.705 0.709 0.716 0.717 0.720 0.724 0.723

DUSt3R-CO3D [30] 0.679 0.672 0.674 0.673 0.673 0.671 0.668
DUSt3R-all [30] 0.589 0.594 0.595 0.599 0.603 0.600 0.597
DiffusionSfM 0.754 0.753 0.750 0.750 0.749 0.752 0.753

Table 5. Evaluation of the Predicted Geometry and Focal Length on CO3D Unseen Categories. Top: Chamfer Distance (CD)
computed over all scene points. Middle: CD computed on foreground points only. Bottom: Percentage of predicted focal lengths within
15% of the ground truth. RD+MoGe refers to the Ray Diffusion camera pose, with depth estimates from MoGe aligned to the ground
truth. DUSt3R-CO3D is trained solely on CO3D, while DUSt3R-all is trained on multiple datasets. DiffusionSfM outperforms all methods
in terms of full scene geometry and estimated focal length, and also outperforms both RD+MoGe and DUSt3R-CO3D on foreground
geometry.

Rotation Accuracy (↑, @ 15◦) Center Accuracy (↑, @ 0.1)
# of Images 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Se
en

Sparse Model 88.8 89.6 89.8 90.1 90.0 90.3 90.2 100 93.7 89.6 87.2 85.5 84.5 83.4
Dense Model (1) 84.9 84.1 83.8 84.3 84.2 84.2 83.7 100 92.5 87.4 84.1 81.8 79.8 76.9
Dense Model (2) 92.4 93.0 93.3 93.5 93.6 93.8 93.8 100 95.2 92.1 90.5 89.2 88.7 87.8

U
ns

ee
n Sparse Model 82.5 84.2 85.2 86.1 86.5 86.6 86.6 100 87.9 81.5 77.9 75.9 73.8 72.7

Dense Model (1) 77.8 79.0 79.6 80.5 80.5 80.7 79.9 100 86.2 78.6 74.1 71.5 68.6 66.1
Dense Model (2) 90.1 91.0 91.8 92.6 92.9 93.0 93.1 100 90.9 85.7 83.7 82.4 80.9 80.7

Table 6. Camera Rotation and Center Accuracy on CO3D at Different Training stages. On the left, we report the proportion of relative
camera rotations within 15◦ of the ground truth. On the right, we report the proportion of camera centers within 10% of the scene scale.
To align the predicted camera centers to ground truth, we apply an optimal similarity transform (s, R, t). Hence the alignment is perfect
at N = 2 but worsens with more images.

Input Images Sparse Model Dense Model

Figure 10. Qualitative Comparison of Sparse and Dense Model
Outputs. The sparse model predicts the ray origin and endpoint
for each image patch, limiting its ability to capture the fine-grained
details of the scene.

divide them by 256 to account for the patch-wise addition.
While the DiT in the dense model has learned meaningful
representations, the DPT decoder is initialized from scratch.
To avoid breaking the learned DiT weights in early training
iterations, we freeze its weights while only training the con-

volutional embedding layer and the DPT decoder for a few
iterations. After that, we train the whole model together, in-
cluding the DINOv2 encoder as well (which was frozen in
the previous stage). We compare the performance of Diffu-
sionSfM at each stage in Tab. 6.
Training Resources. We train our sparse model on 8 RTX
A5000 GPUs for 400,000 iterations, which takes approxi-
mately 5 days. To “warm up” our dense model, we freeze
its DiT weights and train it for 55,000 iterations on 6 RTX
A6000 GPUs, requiring an additional 16 hours. Finally, we
unfreeze the entire model and continue training for 430,000
iterations on 4 H100 GPUs, which takes roughly 3 days.

E. Inference Details

DiffusionSfM utilizes x0-parameterization to predict the
clean ray origin and endpoint map as the model output, em-
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Figure 11. Performance of x0-Prediction Across Diffusion Denoising Timesteps (N = 8). The X-axis represents the diffusion denoising
timesteps, with T = 100 indicating predictions starting from Gaussian noise and T = 0 corresponding to the clean sample. The Y-axis
shows the accuracy for camera rotation (blue) and camera center (orange). Notably, DiffusionSfM achieves peak performance at T = 90.
As a result, in inference, we perform only 10 diffusion steps, significantly improving inference speed.
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Figure 12. Training Loss Curve for DiffusionSfM without Homogeneous Representation. The X-axis represents training iterations (in
thousands, k), and the Y-axis denotes the loss value. Without incorporating a homogeneous representation for ray origins and endpoints,
the model struggles to train effectively due to significant scale differences across various scene components.

ploying 100 diffusion denoising timesteps. In Fig. 11, we
evaluate the accuracy of x0-prediction at each timestep with
eight input images. Interestingly, we find that DiffusionSfM
achieves its most accurate clean sample predictions at an
early timestep (T = 90), rather than at the final denoising
step (T = 0). This observation remains consistent across
different numbers of input images (Zhang et al. [32] also
have a similar observation that early stopping helps improve
performance). To capitalize on this property, we limit in-
ference to 10 denoising steps and use the x0-prediction at
T = 90 as the final output, significantly reducing inference
time. Throughout our experiments, we consistently adopt
this approach to report all results presented in our paper.

F. The Effect of Homogeneous Representation

To underscore the importance of the proposed homoge-
neous representation for ray origins and endpoints, we train
a variant of DiffusionSfM using these components directly
in R3 (i.e. without using homogeneous coordinates). For
this model, we employ a scale-invariant loss function, as
used in DUSt3R [30]. The training loss curve for this model
is shown in Fig. 12. Notably, the model fails to converge,

with the training loss remaining persistently high. This fail-
ure occurs because our diffusion-based approach assumes
input data within a reasonable range, as the Gaussian noise
added during training has a fixed standard deviation of 1.
Consequently, training scenes with substantial scale differ-
ences across components disrupt the model’s learning pro-
cess. In contrast, employing homogeneous coordinates en-
ables the normalization of the input data to a unit norm,
which not only stabilizes training and facilitates conver-
gence but also provides an elegant representation of un-
bounded scene geometry.

G. Converting Ray Origins and Endpoints to
Camera Poses

The camera centers for each input image are recovered by
averaging the corresponding predicted ray origins. To deter-
mine camera rotations and intrinsics, we follow the method
proposed by Zhang et al. [32], which involves solving for
the optimal homography that aligns the predicted ray di-
rections with those of an identity camera. For additional
details, we refer readers to Zhang et al. [32].


	Introduction
	Related Work
	Method
	3D Scenes as Ray Origins and Endpoints
	DiffusionSfM
	Practical Training Considerations
	Guidance for Diffusion Inference

	Experiments
	Experimental Setup
	Evaluation on CO3D
	Ablation Study
	Leveraging Diffusion Denoising Process

	Discussion
	Additional Analysis: Ray Diffusion + MoGe
	More Qualitative Comparisons
	Mono-Depth Diffusion Guidance Visualization
	Sparse-to-Dense Training Details and Evaluation
	Inference Details
	The Effect of Homogeneous Representation
	Converting Ray Origins and Endpoints to Camera Poses

