Qitao Zhao

Webpage: qitaozhao.github.io

GitHub: github.com/QitaoZhao

Email: qitaoz@outlook.com (Preferred), qitaoz@andrew.cmu.edu

Location: Pittsburgh, PA, USA

Phone: (+1) 412-789-9102

Google Scholar: Profile

EDUCATION

Carnegie Mellon University, Pittsburgh, PA, USA

Aug, 2023 – Dec, 2024

Master of Science, Computer Vision

GPA: 4.11/4.3

GPA: 94.61/100

Advisor: Shubham Tulsiani

Shandong University, Qingdao, Shandong, China Bachelor of Engineering, Electronic Science and Technology

Sept, 2019 - June, 2023

PUBLICATION & PREPRINT

[1] DiffusionSfM: Predicting Structure and Motion via Ray Origin and Endpoint Diffusion

Qitao Zhao, Amy Lin, Jeff Tan, Jason Y. Zhang, Deva Ramanan, Shubham Tulsiani. *In Submission*, 2025. [Paper][Website]

[2] Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis

Qitao Zhao, Shubham Tulsiani.

NeurIPS, 2024. [Paper][Website][Code]

[3] A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose Estimation

Qitao Zhao, Ce Zheng, Mengyuan Liu, Chen Chen. NeurIPS, 2023. [Paper][Website][Code]

[4] PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estimation

Qitao Zhao, Ce Zheng, Mengyuan Liu, Pichao Wang, Chen Chen. CVPR, 2023. [Paper][Website][Code]

RESEARCH EXPERIENCE

My research focuses on inferring 3D structures from sparse 2D signals, such as predicting a 3D human pose from a few 2D poses or estimating 3D shapes from sparse-view images. I am passionate about recovering visually and physically plausible 3D structures from everyday observations (e.g., photographs or video clips) or through our interactions with the world around us.

Carnegie Mellon University, Physical Perception Lab Sept, 2023 – Present Graduate Student Researcher Advisor: Shubham Tulsiani

Topic: Sparse-view Camera Pose Estimation and Reconstruction

[1] **DiffusionSfM** (June, 2024 – Present)

- Proposed a diffusion-based framework to infer pixel-aligned camera ray origins and endpoints (*i.e.*, point clouds) from multiple input images, serving as a unified representation for scene geometry and camera pose
- Designed a *depth-mask conditioning* approach to deal with missing depth in ground truth data from real-world datasets when training diffusion-based models
- Introduced a diffusion guidance mechanism to guide the x_0 -prediction from our model using mono-depth estimates from off-the-shelf models, which significantly improves the predicted geometry
- [2] SparseAGS (Sept., 2023 May, 2024)
- Introduced an analysis-by-generative-synthesis framework that jointly estimates 3D and camera viewpoints given sparse-view images, by integrating a 6-DoF novel-view

- generative prior in an analysis-by-synthesis approach
- Proposed a pose outlier identification and correction approach by iteratively reconstructing 3D and investigating re-projection errors, which handles potential outlier(s) in the initial pose estimates from off-the-shelf methods
- Delivered an invited talk at the CMU VASC Seminar and presented a poster at the XRTC Symposium

University of Central Florida, CRCV

Undergraduate Student Researcher *Topic:* 3D Human Pose Estimation

- [3] Context-Aware PoseFormer (Dec, 2022 May, 2023)
- Proposed to leverage readily available visual representations (*i.e.*, multi-resolution feature maps) from 2D pose detectors to alleviate inherent ambiguities in single-view 2D-to-3D human pose estimation
- Developed a *Deformable Context Extraction* module to adaptively extract joint-centric contextual features from feature maps, accounting for the uncertainty in detected 2D joints within an end-to-end learnable framework
- [4] **PoseFormerV2** (Apr., 2022 Nov., 2022)
- Proposed to leverage a low-frequency representation for 2D joint sequences to enhance the efficiency on long sequences and robustness to keypoint noise of transformer-based methods
- Integrated the proposed frequency-domain representation into PoseFormer's temporal encoder, introducing novel designs such as *FreqMLP* to enhance time-frequency feature fusion
- Applied the proposed approach to other transformer-based SoTA methods

AWARDS NeurIPS Travel Grant

2023

Apr, 2022 - Aug, 2023

Advisor: Chen Chen

Outstanding Undergraduate Thesis Award

2023

Ranked 1st out of 7 finalists among 350+ students in the department

National Scholarship

2020

Awarded to the top 0.2% of students nationwide for academic excellence

SERVICE Reviewer: NeurIPS 2024, ICLR 2024, ECCV 2024 Workshop

SKILLS Programming: C, MATLAB, Python (NumPy, PyTorch, PyTorch3D)

Languages: English (fluent), Mandarin (native)

Test Scores: TOEFL (109; Speaking: 24), GRE (326+4.0)